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Introduction: In balanced steady state free precession (bSSFP), the real and imaginary
components of the steady-state transverse magnetization form an ellipse across phase
cycles on the complex plane. Quantitative parameters may be derived using analytical
expressions based on the geometric properties of this ellipse using a method referred to as
PLANET1. However, voxel-wise fitting is sensitive to additive noise, leading to inaccuracies.
We propose estimating relaxation parameters as a constrained nonlinear least square
problem subject to data consistency costs in k-space to improve its noise robustness. Unlike
traditional methods that extract quantitative relaxation parameters pixel by pixel, our
approach leverages global information by jointly estimating T1 and T2 across the entire image
and assessing reconstruction errors in k-space. Additionally, it supports flexible
regularization options, such as total variation, which further mitigates noise sensitivity.
Theory: In this work, we aim to cast the parameter mapping as a constrained nonlinear
optimization problem of the standard form:
minimize C(T1, T2, M0, B) = (F · M(T1, T2, M0, B0) - y)2 + λR(T1, T2, M0, B0) st: pi = 0, qi < 0

Here, y signifies the collected data, F denotes the linear Fourier transform operator, and M is
a nonlinear operator denoting the bSSFP steady state magnetization at TE. The goal is to
jointly estimate the T1, T2, M0, and B0 maps that best align with the acquired k-space
measurement y. p is an equality constraint and q is an inequality constraint on the parameter
range. For example, T1 and T2 values should be non-negative, and T1 is always greater than
or equal to T2 in biological tissues. R is an optional regularization function and λ is the
regularization parameter. To accelerate the optimization, the analytical gradient and Hessian
is provided to the optimization algorithm:

∂ C = ( Φ · ∂ M )ᴴ · (F · M - y) = ( Φ · J )ᴴ (F · M - y)
∂2C = (Φ · J)H · (Φ · J) + (Φ ·∇ J) H · (F · M - y)

J is the Jacobian matrix of the bSSFP steady state equation. Φi,j is the Fourier basis function
and defined as Φi,j = Fδi,j. The δ symbol denotes a 2D Kronecker delta function, resulting in a
matrix with a 1 at position (i,j) and 0 elsewhere. Our approach is different by performing the
parametric fitting in k-space, where voxel information is correlated through Fourier basis
functions. Intuitively, If there exists an overestimated T1 due to noise for a given voxel, this
will propagate to k-space via the Fourier basis function and have a strong penalty in the data
consistency cost.
Methods: To evaluate noise sensitivity, we perform a Monte Carlo simulation by randomly
generating T1, T2, and M0 on a 16 by 16 image patch. T1 is generated from 100 ms to 3000
ms, T2 ranges from 1 ms and is upper bounded by the generated T1 value, and M0 values
range from 0 to 2. B0 map is generated based on low frequency noise in k-space to create
smooth and slowly varying modulations in the image domain. We used a flip angle of 30
degrees, TR of 10 ms, TE of 5 ms. We used conservatively high values of TR to yield a



worst-case scenario for banding
artifacts. We simulated various
datasets of 6-10 phase cycles with
an increment of 2. The Monte Carlo
simulation is repeated 5000 times for
each combination of SNR and phase
cycles. In the second simulation, we
apply total variation as the
regularization term on the T1 and T2

maps to investigate its effects on a
simulated uniform phantom. The
optimization is implemented in
MATLAB.
Results: In Figure 1, the
constrained method consistently
shows lower mean errors in T1 and
T2 estimations across all SNR levels,
outperforming the gold standard
PLANET method. Figure 2 shows
the effect of the total variation. This
simulation serves as a proof of
concept, illustrating that these
regularization techniques can
effectively guide the reconstruction
process similar to what is observed
in image optimization tasks.
Discussion: The proposed method
can be extended to multiple coils for
parallel imaging. A key advantage is
its ability to jointly solve for
parameter maps by leveraging
information across phase cycles and
coils, effectively utilizing data
redundancy. One limitation is the
assumption of an ideal
single-component relaxation model.

Factors like diffusion, multi-compartment, and magnetization transfer can cause deviation
and the steady state equation used in this work cannot fully capture this complexity2. It is
possible, at least partially, to include these secondary effects into the model. Future work will
include phantom and in vivo acquisitions to validate the results.
Conclusions: The proposed constrained model-based fitting approach demonstrates
robustness to noise across various phase cycles and SNR levels and outperforms the gold
standard PLANET method. This is due to 1) jointly solving parameter maps over an image,
2) constraining the search space, and 3) allowing additional regularizations.
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