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Introduction
● Zero Echo Time imaging (ZTE) can be used to image tissues with short and ultra-short transverse relaxation times 
● The radiofrequency (RF) excitation is performed during spatial encoding, which leads to missing samples in the 

center of the k-space1,2,3.  
● The absence of the low-frequency Fourier coefficients translates, through Fourier transformation, into amplitude 

modulations within the image domain. This leads to a considerable reduction in image contrast.

Schematic of a ZTE sequence

Effects of the dead-time gap in ZTE imaging in 
the simulated spherical phantom.

1) Weiger 2012  2) Weiger 2019  3) Madio 1995



Background Information
● Sequence based methods  

● WASPI1, PETRA2, HIFY3 
● Separate acquisition 
● All these techniques introduce an non-ideal point spread function and potentially cause phase inconsistencies due 

to motion when combined with ZTE data.  

● Reconstruction based methods  
● Algebraic4, GRAPPA5, CG-SENSE5 
● Proposed: The proposed method reformulates the in-filling of the missing samples as an inverse problem subject 

to low rank constrains.

1) Wu 2007  2) Grodzki 2011  3) Froidevaux 2021  4) Kuethe 1999.  5) Wood2021



Theory
● Algebraic  
- Exploits the additional information from radial 

oversampling 
● GRAPPA and SENSE  
- Exploits the additional information from multiple coils 
● Low Rank  
- The proposed method recovers the missing data by 

enforcing self-consistency among neighboring K-
space points in Cartesian space by minimizing the 
rank of the structured Hankel matrix.

The flow chart of the proposed low rank 
reconstruction 



Methods

● Simulation  
● The performance and robustness are evaluated through a comparative analysis that 

combines Monte Carlo simulations and data obtained from in vivo experiments.  
● The proposed method is tested for dead-time gaps ranging up to 4.5 Nyquist dwells, across 

SNR levels of 5, 10, 15, and 20 dB. 
● In-vivo  

● The data was acquired on a  3.0 T scanner (Signa Premier XT, GE Healthcare, Waukesha, 
WI) using a 48 channel head-coil. Isotropic spatial resolution of 0.89 mm; Field-of-view of 
235 mm. Flip angle of 1°; Readout bandwidth was set to +- 15.6 kHz, +- 20.8 kHz, +-31.25 
kHz, +- 41.67 kHz, and +- 55.56 kHz with two times readout oversampling. Dead-time gap of 
2, 2.5, 3, 3.5, and 4.5 Nyquist dwells are introduced under this setting, respectively.



Results: simulation 

Low Rank method demonstrates superior results across all dead-time gaps compared 
to other methods at SNR = 5dB. 

An example of the digital brain simulations. 



Results: simulation 

Low Rank method demonstrates superior results

Quantitative analysis of the 3D brain simulation  



Results: in-vivo 

Both the low rank and CG-
SENSE methods are 
effective within a bandwidth 
of +- 41.67 kHz. 

Reconstruction result with data collected using bi-directional radial 
sampling path for a normal volunteer.  



Discussion
● Typically, conventional parallel imaging methods involve acquiring a fully sampled low-resolution 

signal in the center of k-space region. This signal is then utilized to estimate either the GRAPPA 
kernels or coil sensitivity profiles.  

● However, within the ZTE acquisition, this low-resolution signal is inherently not present.  
● Yet, we have shown that such problem can be solved much like conventional parallel imaging. 
● The low-rank method proposed in this work employs both coil sensitivity information and a 

structured Hankel matrix, integrating the assumption that the solution lies within a low-rank 
subspace. 



Conclusion
• We introduce a ZTE implicit data in-filling method based on low-rank reconstruction. 

This approach enables artifact-free reconstruction, without the need for gathering 
additional data. It demonstrated superior performance than the algebraic, ZINFANDEL, 
and the CG-SENSE method.  

• It should be noted that when trying to recover data for applications that require more 
bandwidth, such as lung, significant difficulties remain. The use of CG-SENSE leads to 
significant noise amplifications, and the low-rank approach struggles to restore certain 
low-frequency components in the Fourier spectrum.


