Homodyne¶
Author: Zimu Huo¶
Date: 05.2022¶
Mainly based on Prof. John Pauly's diagram.
References
[1]
Author: G McGibney et al.
Title: Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI
Link: https://pubmed.ncbi.nlm.nih.gov/8371675/
[2]
Author: John Pauly
Title: Partial k-Space Recconstruction
Link: https://ece-classes.usc.edu/ee591/library/Pauly-PartialKspace.pdf
In [3]:
import sys
sys.path.insert(1, '../')
import matplotlib.pyplot as plt
import util.coil as coil
from util.fft import *
import numpy as np
import util.mask as undersample
import util.simulator as simulate
from numpy import linalg
from util.zpad import *
from tqdm.notebook import tqdm
from util.partialFourier import *
In [1]:
def homodyne(dataR, calib, kernal = "linear"):
[ny,nx] = dataR.shape
idx = np.where(np.sum(np.abs(dataR), axis=1)==0)[0]
kern = np.zeros([ny,nx])
kern[:ny-idx[0],:] = 2
if kernal == "linear":
kern[ny-idx[0]:idx[0],:] = np.repeat(np.linspace(2,0,2*idx[0]-ny).reshape(-1,1), nx, 1)
if kernal == "step":
kern[ny-idx[0]:idx[0],:] = 1
phs = np.exp(1j*np.angle(ifft2c(calib)))
im = np.conj(phs)*ifft2c(dataR*kern)
im[im < 0] = 0
return im
In [4]:
data = np.load("../lib/slice1_grappa1.npy")
[ny,nx,nc] = data.shape
In [5]:
dataR = data * undersample.partialFourier(data.shape, 0.7)
calib = simulate.acs(dataR,(64, 256))
calib = zpad3(calib)
In [6]:
recon = np.zeros(dataR.shape, dtype = complex)
for c in tqdm(range(nc)):
recon[...,c] = homodyne(dataR[...,c], calib[...,c])
0%| | 0/34 [00:00<?, ?it/s]
In [7]:
plt.figure(figsize=(12, 8), dpi=80)
plt.subplot(121)
plt.title("raw data")
plt.imshow(np.log(np.abs(coil.rsos((dataR)))),cmap='gray')
plt.subplot(122)
plt.title("homodyne")
plt.imshow(np.abs(coil.rsos(recon)),cmap = 'gray')
plt.show()
C:\Users\Zimu\AppData\Local\Temp\ipykernel_11184\815852734.py:4: RuntimeWarning: divide by zero encountered in log plt.imshow(np.log(np.abs(coil.rsos((dataR)))),cmap='gray')
In [ ]:
In [ ]: